Category Archives: Frankenstein

Sending OPC UA Data with GraphQL to Unity…

In a simple setup I have tested to send 2000 value changes per second from an OPC UA server to Unity with GraphQL, the Open-Source Frankenstein Automation Gateway, and the GraphQL for Unity Asset. And it could go up to 10000 value changes per second…

I had one DotNet OPC UA server with a lot of simulated tags with random data. The .Net OPC UA server is the DotNet reference implementation from the OPCFoundation, which can be found here.

On top of that the Open-Source Frankenstein Automation Gateway for GraphQL was running. It is connected to the OPC UA server. It offers a GraphQL interface to the tags of one or more connected OPC UA servers.

In Unity I had used the GraphQL for OPC UA Asset to easily connect to the Gateway, browse the tags, and subscribe to the value changes of 100 tags.

Each tag was changed by the OPC UA server every 45ms. This ends up in a bit more than 2000 value changes per seconds, which were sent from the OPC UA server to the Unity Application.

Here we see the Application running 3 times on my Laptop with an Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz. In the center you see the amount of incoming value changes per second (red number). Around that number, we see some of the values coming in from OPC UA. At the bottom we see the CPU load of the Frankenstein Automation Gateway (java program) and the OPC UA DotNet Server. Both were running on an old Intel(R) Core(TM) i3-6100U CPU @ 2.30GHz.

It was also possible to increase to load up to 10000 value changes per seconds! Sending 100 values every 10ms from OPC UA to Unity…

Industrial Data in the Graph Database Neo4j…

The Frankenstein Automation Gateway now also supports to write OPC UA values to the graph database Neo4j.

At startup it can also write the OPC UA node structure into the graph database, so that the basic model of the OPC UA server is mirrored to the graph database. For that you have to add the “Schemas” section in the config file (see an example configuration file below). There you can choose which RootNodes (and all sub nodes) of your OPC UA systems should be mirrored to the graph database.

Once you have the (simplified) OPC UA information model in the graph database, you can add on top of that your own knowledge graph data and create relations to OPC UA nodes of your machines to enrich the semantic data of the OPC UA model.

With that model you can leverage the power of your Knowledge Graphs in combination with live data from your machines and use Cypher queries to get the knowledge out of the graph.

Here we see an example of the OPC UA server from the SCADA System WinCC Open Architecture. The first level of nodes below the “Objects” node represent Datapoint-Types (e.g. PUMP1) followed by the Datapoint-Instances (e.g.: PumpNr) and below that we see the datapoint elements (e.g. value => speed). An datapoint element is an OPC UA variable where we also see the current value from the SCADA system.

Example Gateway configuration file:

Database:
  Logger:
    - Id: neo4j
      Enabled: true
      Type: Neo4j
      Url: bolt://nuc1.rocworks.local:7687
      Username: "neo4j"
      Password: "manager"
      Schemas:
        - System: opc1  # Replicate node structure to the graph database
          RootNodes:
            - "ns=2;s=Demo"  # This node and everything below this node
        - System: winccoa1  # Replicate the nodes starting from "i=85" (Objects) node
      WriteParameters:
        BlockSize: 1000
      Logging:
        - Topic: opc/opc1/path/Objects/Demo/SimulationMass/SimulationMass_Float/+
        - Topic: opc/opc1/path/Objects/Demo/SimulationMass/SimulationMass_Double/+
        - Topic: opc/opc1/path/Objects/Demo/SimulationMass/SimulationMass_Int16/+
        - Topic: opc/winccoa1/path/Objects/PUMP1/#
        - Topic: opc/winccoa1/path/Objects/ExampleDP_Int/#


Display OPC UA data via GraphQL in a HTML page …

Here is a simple HTML page which fetches data from the OPC UA Automation Gateway “Frankenstein”. It uses HTTP and simple GraphQL queries to fetch the data from the Automation Gateway and display it with Google Gauges. It is very simple and it is periodically polling the data. GraphQL can also handle subscription, but then you need to setup a Websocket connection.

<html>
  <head>
   <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
   <script type="text/javascript">
      google.charts.load('current', {'packages':['gauge']});
      google.charts.setOnLoadCallback(drawChart);

      var data = null
      var options = null
      var chart = null

      function drawChart() {

        data = google.visualization.arrayToDataTable([
          ['Label', 'Value'],
          ['Tank 1', 0],
          ['Tank 2', 0],
          ['Tank 3', 0],
        ]);

        options = {
          width: 1000, height: 400,
          redFrom: 90, redTo: 100,
          yellowFrom: 75, yellowTo: 90,
          minorTicks: 5
        };

        chart = new google.visualization.Gauge(document.getElementById('chart_div'));

        chart.draw(data, options);
      }

      function refresh() {
        const request = new XMLHttpRequest();
        const url ='http://localhost:4000/graphql';
        request.open("POST", url, true);
        request.setRequestHeader("Content-Type", "application/json");
        request_data = {
            "query": `{ 
              Systems {
                unified1 {
                  HmiRuntime {
                    HMI_RT_5 {
                      Tags {
                        Tank1_Level { Value { Value } }
                        Tank2_Level { Value { Value } }
                        Tank3_Level { Value { Value } }                          
                      }
                    }
                  }
                }
              }
            }`
        }
        request.send(JSON.stringify(request_data));

        request.onreadystatechange = function() {
          if (this.readyState==4 /* DONE */ && this.status==200) {
            const result = JSON.parse(request.responseText).data
            const x = result.Systems      
            data.setValue(0, 1, x.unified1.HmiRuntime.HMI_RT_5.Tags.Tank1_Level.Value.Value);
            data.setValue(1, 1, x.unified1.HmiRuntime.HMI_RT_5.Tags.Tank2_Level.Value.Value);
            data.setValue(2, 1, x.unified1.HmiRuntime.HMI_RT_5.Tags.Tank3_Level.Value.Value);
            chart.draw(data, options);
          } 
        }
      }

      setInterval(refresh, 250)
    </script>

  </head>
  <body>
    <div id="chart_div" style="width: 400px; height: 120px;"></div>
    <!--<button name="refresh" onclick="refresh()">Refresh</button>-->
  </body>
</html>

OPC UA Tag logging to JDBC databases with Frankenstein…

Added #JDBC as logging option to the Open-Source Automation-Gateway Frankenstein. Values from #OPCUA servers can now also be logged to relational databases – #sql is still so great and powerful! Tested with  #postgresql  #mysql and #mssqlserver … fetching history values via the integrated #graphql server is also included…

You have to add the JDBC driver to your classpath and set the appropriate JDBC URL path in the Frankenstein configuration file – see an example below. PostgreSQL, MySQL and Microsoft SQL Server JDBC drivers are already included in the build.gradle file (see lib-jdbc/build.gradle) and also appropriate SQL statements are implemented for those relational databases. If you use other JDBC drivers you can add the driver to the lib-jdbc/build.gradle file as runtime only dependency and you may specify SQL statements for insert and select in the configuration file.

You can specify the table name in the config file with the option “SqlTableName”, if you do not specify the table name then “events” will be used as default name.

Create a table with this structure. For PostgreSQL, MySQL and Microsoft SQL Server the table will be created on startup automatically.

CREATE TABLE IF NOT EXISTS public.events
  (
      sys character varying(30) NOT NULL,
      nodeid character varying(30) NOT NULL,
      sourcetime timestamp without time zone NOT NULL,
      servertime timestamp without time zone NOT NULL,
      numericvalue numeric,
      stringvalue text,
      status character varying(30) ,
      CONSTRAINT pk_events PRIMARY KEY (system, nodeid, sourcetime)
  )
  TABLESPACE ts_scada;

Configuration of Frankenstein for JDBC Logging:

Database:
  Logger:
    - Id: postgres
      Type: Jdbc
      Enabled: true
      Url: jdbc:postgresql://nuc1:5432/scada
      Username: system
      Password: manager
      SqlTableName: events     
      Logging:
        - Topic: opc/opc1/path/Objects/Demo/SimulationMass/SimulationMass_SByte/+
        - Topic: opc/opc1/path/Objects/Demo/SimulationMass/SimulationMass_Byte/+

Because the SQL dialect can be slightly different with other databases, you can specify the insert and select SQL statement in the config file:

Database:
  Logger:
    - Id: log1
      Type: Jdbc
      Enabled: true
      Url: jdbc:other://nuc1:1111/scada
      Username: system
      Password: manager
      SqlTableName: events     
      SqlInsertStatement: > 
        INSERT INTO events (sys, nodeid, sourcetime, servertime, numericvalue, stringvalue, status)
         VALUES (?, ?, ?, ?, ?, ?, ?)
         ON CONFLICT ON CONSTRAINT PK_EVENTS DO NOTHING  
      SqlQueryStatement: >
        SELECT sourcetime, servertime, numericvalue, stringvalue, status
         FROM events
         WHERE sys = ? AND nodeid = ? AND sourcetime >= ? AND sourcetime <= ? 

The history data can also be queried via the GraphQL interface of Frankenstein, see an example query here:

{
  a:NodeValue(System:"opc1", NodeId: "ns=2;s=Scalar_Static_Int64") {
    Value
    mysql:History(Log: "mssql", LastSeconds: 600) {
      Value
      SourceTime
      ServerTime
    }
    pgsql:History(Log: "postgres", LastSeconds: 600) {
      Value
      SourceTime
      ServerTime
    }    
  }
  b:NodeValue(System:"opc1", NodeId: "ns=2;s=Scalar_Static_String") {
    Value
    mysql:History(Log: "mysql", LastSeconds: 600) {
      Value
      SourceTime
      ServerTime
    }
    pgsql:History(Log: "postgres", LastSeconds: 600) {
      Value
      SourceTime
      ServerTime
    }    
  }  
}

How to log OPC UA tag values to Apache Kafka…

In this article we use the Frankenstein Automation Gateway to subscribe to one public available OPC UA server (milo.digitalpetri.com) and log tag values to Apache Kafka. Additionally we show how you can create a Stream in Apache Kafka based on the OPC UA values coming from the milo OPC UA server and query those stream with KSQL.

Setup Apache Kafka

We have used the all-in-one Docker compose file from confluent to quickly setup Apache Kafka and KSQL. Be sure that you set your resolvable hostname or IP address of your server in the docker-compose.yml file. Otherwise Kafka clients cannot connect to the broker.

KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:29092,PLAINTEXT_HOST://192.168.1.18:9092

Setup Frankenstein

Install Java 11 (for example Amazon Corretto) and Gradle for Frankenstein. Unzip Gradle to a folder and set your PATH variable to point to the bin directory of Gradle.

Then clone the source of Frankenstein and compile it with Gradle:

git clone https://github.com/vogler75/automation-gateway.git
cd automation-gateway/source/app
gradle build

There is a example config-milo-kafka.yaml file in the automation-gateway/source/app directory which you can use by setting the environment variable GATEWAY_CONFIG.

export GATEWAY_CONFIG=config-milo-kafka.yaml

In this config file we use a public Eclipse Milo OPC UA server. The Id of this connection is “milo“.

OpcUaClient:
  - Id: "milo"
    Enabled: true
    LogLevel: INFO
    EndpointUrl: "opc.tcp://milo.digitalpetri.com:62541/milo"
    UpdateEndpointUrl: false
    SecurityPolicyUri: http://opcfoundation.org/UA/SecurityPolicy#None
    UsernameProvider:
      Username: user1
      Password: password

Here is the configuration of the Kafka Logger where you can configure what OPC UA tags should be published to Kafka. In that case we use a OPC UA Browse Path and a wildcard to use all variables below one node.

Database:
  Logger:
    - Id: kafka1
      Type: Kafka
      Enabled: true
      Servers: server2:9092
      WriteParameters:
        QueueSize: 20000
        BlockSize: 10000
      Logging:
        - Topic: opc/milo/path/Objects/Dynamic/+

Start Frankenstein

export GATEWAY_CONFIG=config-milo-kafka.yaml
gradle run

Create a Stream in KSQL

Start a CLI session to KSQL on the host where the Kafka containers run:

docker exec -ti ksqldb-cli ksql http://ksqldb-server:8088

Create a stream for the Kafka “milo” topic

CREATE STREAM milo(
  browsePath VARCHAR KEY, 
  sourceTime VARCHAR, 
  value DOUBLE, 
  statusCode VARCHAR
) WITH (
  KEY_FORMAT='KAFKA',
  KAFKA_TOPIC='milo', 
  VALUE_FORMAT='JSON',
  TIMESTAMP='sourceTime',TIMESTAMP_FORMAT='yyyy-MM-dd''T''HH:mm:ss.nX'
);

Then you can execute a KSQL query to get the stream of values from the OPC UA server:

ksql> select browsepath, sourcetime, value from milo emit changes;
+---------------------------------------+---------------------------------------+---------------------------------------+
|BROWSEPATH                             |SOURCETIME                             |VALUE                                  |
+---------------------------------------+---------------------------------------+---------------------------------------+
|Objects/Dynamic/RandomInt32            |2021-05-02T11:29:04.405465Z            |1489592303                             |
|Objects/Dynamic/RandomInt64            |2021-05-02T11:29:04.405322Z            |-6.3980451035323023E+18                |
|Objects/Dynamic/RandomFloat            |2021-05-02T11:29:04.405350Z            |0.7255345                              |
|Objects/Dynamic/RandomDouble           |2021-05-02T11:29:04.405315Z            |0.23769088795602633                    |

Automation Gateway with Apache IoTDB…

The Frankenstein Automation Gateway can now write OPC UA tag values to the Apache IoTDB. Did some rough performance tests with 50 OPC UA servers and one IoTDB… the IoTDB is pretty impressive fast. Also the data model and terminology is interesting and it seems to fit good to a hirarchical structure in OPC UA.

In this lab I have connected 50 OPC UA servers (based on a .NET OPC UA server example) to Frankenstein. Each OPC UA server publishes 1000 tags of different type, so in summary we have 50000 tags connected to Frankenstein. The publish rate can be adjusted by setting an OPC UA tag. Sure, we do that via GraphQL over Frankenstein. On my commodity hardware I ended with writing about 250Khz to the IoTDB with an CPU load of ~200%. So, I assume the IoTDB is able to handle much more value changes per second.

Figured out that one DB Logger inside of Frankenstein roughly is able to handle 100000 events per second. We can spawn multiple DB Logger for scalabilty. Vert.X can then use multiple cores (Vert.X calls this pattern the Multi-Reactor Pattern to distinguish it from the single threaded reactor pattern).

Just to note: there is only a memory buffer implemented, so if the DB is down, then the values will be lost if the buffer runs out of space. But I think to handle such situations it would make sense to put Apache Kafka between the Gateway and the Database.

GraphQL Query to set the simulation interval:

query ($v: String) {
  Systems {
    opc1 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc2 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc3 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc4 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc5 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc6 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc7 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc8 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    opc9 { Demo { SimulationInterval { SetValue(Value: $v) } } }
    ...
  }
}
Query Variables: {"v": "250"}